Using learning taxonomies as a model for the creation of a model for Information Assurance Curriculum development from Undergraduate to PhD

Dr. Steven Brown
Professor Mary Brown
Capella University
Introduction

- Information Security Curriculums
 - Undergraduate
 - Masters
 - Doctoral (PhD and DBAs)
 - Associate level
 - Community colleges
 - K12
 - Certificates
Information Security Standards

- Committee on National Security Systems (CNSS)
- IEEE
- National Security Agency’s (NSA) Information Security Assessment Model (IAM)
- The INFOSEC Assurance - Capability Maturity Model (IA-CMM)
- ISACA Model Curriculum for Information Security Management
Problems encountered

- Teaching to a certification
- Same certification offered at different levels
- Overlap
- Same standard at same degree level
- Student frustration
- Not critically thinking
- No scholarly thinking
- More application at all levels

- Additional areas added e.g.,
 - Project Management, Finance, Business Skills
 - More hands on
Main Problem

- Learning models?
 - How to learn
 - Understand, evaluate
 - Analysis
 - Create
 - Learn
Learning Models

- Bloom’s (1956) taxonomy of educational objectives
- Anderson’s and Krathwohl’s (2001) taxonomy
- Fink’s (2003) significant learning model
- S.I. Hayakawa 1991 ladder of Abstraction
- Conscious Competence Adult Learning Theory
Bloom’s taxonomy of the Cognitive Domain

- Evaluation
- Synthesis
- Analysis
- Application
- Comprehension
- Knowledge

Anderson’s and Krathwohl’s taxonomy

- Create
- Evaluate
- Analyze
- Apply
- Understand
- Remember

<table>
<thead>
<tr>
<th>The Knowledge Domains</th>
<th>Remember</th>
<th>Understand</th>
<th>Apply</th>
<th>Analyze</th>
<th>Evaluate</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fink Significant Learning Model

- Learning How to Learn
- Caring
- Human Dimension
- Integration
- Application
- Knowledge
- Foundational

Fink’s Interactive Nature of Significant Learning
<table>
<thead>
<tr>
<th>Curriculum Level</th>
<th>Blooms’s Taxonomy</th>
<th>Anderson’s and Krathwohl’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Evaluate / Synthesis</td>
<td>Create / Evaluate</td>
</tr>
<tr>
<td>Masters</td>
<td>Application / Analysis</td>
<td>Analyze / Apply</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>Comprehension / Knowledge</td>
<td>Understand / Remember</td>
</tr>
</tbody>
</table>
Information Assurance Curriculum (Phase One)

<table>
<thead>
<tr>
<th>Curriculum Level</th>
<th>Blooms’s Taxonomy</th>
<th>Anderson’s and Krathwohl’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Evaluate / Synthesis</td>
<td>Create / Evaluate</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>Apply</td>
</tr>
<tr>
<td>Masters</td>
<td>Evaluate</td>
<td>Create</td>
</tr>
<tr>
<td></td>
<td>Application / Analysis</td>
<td>Analyze / Apply</td>
</tr>
<tr>
<td></td>
<td>Knowledge</td>
<td>Remember</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>Comprehension / Knowledge</td>
<td>Understand / Remember</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
</tbody>
</table>
Information Assurance Curriculum (Phase Two)
Conclusion

- Benefits
 - Robust Curriculum
 - Minimum overlap
 - Learner Satisfaction
 - Clear upward path
 - Continued Learning
 - Reinforced interactive learning
Questions?

• Thank you
• Dr. Steven Brown
• Professor Mary Brown
References